We continue by telling people that they can look into the history and learn more about the cartograph. History
Governing FeaturesMaybe a single sentence on the principles with a link to its page. Governing Feature
Urbanism Through the Lens of Complexitywe continue with the shortest intro to the urban fields. Urbanism
Quickly dive into complexity theory and how it can work with urbanism fields through search.
Relates to {{Assemblage-Geography}}
All points are interconnected and interdependent, unfolding in a nonlinear manner with no central source of authority.
Early versions of systems theory assumed that systems could be 'optimized' to a single condition. CAS analysis assumes that more than one system state can satisfy optimizing criteria, and so the system is able to gravitate to multiple equilibria.
This is relevant to the field of Relational Geography
An enslaved state can persist as an attractor (see Attractor States) within a Fitness Landscape.
Beyond its day-to-day usage, this term used in now employed in the social sciences to highlight the Path Dependency exhibited in many social systems. This is seen to contrast with prior conceptions like "the march of history", which imply a clear causal structure. By speaking about the work as something contingent, it also begs the question of what other "worlds" might have just as equally manifested, had things been slightly different.
Similar ideas are captured in the ideas of Non-Linearity, {{sensitivity-to-initial-conditions}}, History Matters.
Pictured below: the contingent trajectory of the double pendulum:
See also: Causal loop diagram - Wikipedia
In geography there has been a move away from thinking about space as a "thing" and to instead think about how different places exist due to how they interact with flows. Places that capture more flows, are more geographically relevant
The nature of a building block varies according to the system: it may take the form of an ant, a cell, a neuron or a building.
Complex Adaptive Systems theory provides a useful lens with which to understand various phenomena. Keep reading about Complexity
Well this is some nice and text to help us with whatever this should be. Keep reading about Urbanism
Urban FieldsWe continue by telling people that they can look into the history and learn more about the cartograph. People
TermsMaybe a single sentence on the principles with a link to its page. Terms
Navigating Complexity brings in a wealth of resources and related content associated to the topics and terms. You can see all of them sorted by type.
The site features a system for the submission and evaluation of explanatory diagrams relating to a variety of CAS topics.
Crowdsourcing Diagrams
A new way to explore the content in an interactive dashboard of all topics in this site.
Complexity Explorer
Navigating Complexity is a platform for learning about complex adaptive systems and how they apply to the built environment.
The AuthorSharon has been involved in complexity research for over 20 years, and is the developer of the overall website content and content structure. Learn more about Sharon
Site StewardsSpecific components of the site are generously managed by a Site Stewards, working to keep the content fresh and accurate. Site Stewards
Strike a match and drop it in the forest. How big will the resulting fire be? The forest is dry but not overly so... vegetation is relatively thick. Will the fire burn a few trees and then flame out, or will it jump from branch to branch, burning thousands of acres to the ground?
We might think that the scale of an event is relative to the scale of a cause, and in some instances this is indeed the case. But in the context of complex systems, we find an interesting phenomena. These systems appear to 'tune' themselves to a point whereby system inputs of identical intensities (two matches lit on two different days, otherwise same conditions), result in outputs that diverge wildly (a small fire; a massive fire event). The frequency distribution of intense system outputs (relative to equivalent system inputs) follows power-law regularities.
According to Per Bak, a variety of systems naturally 'tune' themselves to operate at a threshold where such dynamics occurs. He defined this 'tuning' as Self-Organized Criticality. A feature of critical states is that, once reached, system components become highly correlated or linked to other system components. That said, the links are exactly balanced: the system elements are linked just tightly enough so that an input at any point can cascade through the entire system, but just loosely enough, so that there are no redundant links needed to make this occur.
One might think about this like an array of domino-like entities that, instead of being rectangular, are vertical cylinders: able to topple in any direction. The dominos, instead of being arranged in rows, are arranged in a field, with gaps between some cylinders. Accordingly, when a cylinder falls it might strike a gap in the field, with no additional cylinders toppling. Alternately, it might strike an adjacent neighbor, in which case this neighbor will also fall in a particular direction, potentially striking another or potentially dying out. The analogy is made stronger if we imagine that an arrangement whereby, regardless of the direction from which a cylinder is struck, it will wobble and then can fall in any direction. When a system is self-critical, it has reached a state where we can randomly choose any domino to topple and the impact on the overall field will vary according to a power-law distribution. That is to say, that some disturbance will affect only a small number of surrounding dominos, while others will propogate throughout the entire system, causing all cylinders to fall. The occurrence of these large scale versus small-scale cascades follow Power Laws distributions.
We can imagine that it would be very difficult to, from the top down, create a specific arrangement where such dynamics occur. What is surprising, and what Bak and his colleagues showed, is that natural systems will independently 'tune' themselves to such arrangements. Bak famously provides us with the 'sand pile' model as an example of self-organized criticality:
Imagine that we begin to drop a steady stream of grains of sand onto a surface. The sand begins to pile up, forming a cone shape. As more sand is added, the height of the sand cone grows, and there begins to be a series of competing forces: the force of gravity that tends to drag grains of sand downwards, the friction between grains of sand that tends to hold them in place, and the input of new sand grains that tends to put pressure on both of these forces.
What Bak demonstrates is that, as grains are added sand will dislodge itself from the pile, cascading downwards. What is amazing is that it is impossible to predict whether dropping an individual sand grain will result in a tiny dislodgment of sand cascades, or a massive sand avalanche. That said, it is possible to predict the ratio of cascade events over time - which follows a power-law distribution.
What this suggests is that the sand grains cease to operate independently to forces, and instead their response to forces is highly correlated with that of the other sand grains. We no longer have a collection of grains, acting independently, but a system of grains whereby system-wide behaviors are displayed. Accordingly, an input that affects one element in the system might die out then and there, or, because of the correlation amongst all elements, create a chain reaction.
It remains unclear exactly how such system-wide correlations emerge, but we do know something about the nature of these correlations - they are tuned to the point where information is able to propagate through the system with maximum efficiency. In other words, a message or input at one node in the system (a grain of sand, burning tree, or toppling cylinder) has the capacity to reach all other nodes, but this with the least redundancy possible. In other words, there are gaps in the system which means that a majority of inputs ultimately die out, but not so many gaps that it is impossible for an input to reach all elements of the system.
Coming back to our original example, when we strike a match in a forest, if the forest has achieved a 'self-critical' state, then we cannot know whether the resulting fire will spread only to a few trees, a large cluster of trees, or cascade through the entire forest. The only thing that we can know is that the largest scale events will happen with diminishing frequency in comparison to the small scale events.
One possible way of understanding why self-organized criticality occurs is to position it as a process that emerges in systems that are affected both by a pressure to have elements couple with one another (sand-grains becoming interlocked by friction or 'sticky') and some mechanism that acts upon the system to loosen such couplings (the force of gravity pulling grains apart). The feedback between these two pressures 'tunes' the system to a critical state.
Complex systems that exhibit power-laws would seem to exhibit such interactions between two competing and unbalanced forces.
Photo Credit and Caption: Underwater image of fish in Moofushi Kandu, Maldives, by Bruno de Giusti (via Wikimedia Commons)
Cite this page:
Wohl, S. (2022, 2 June). Self-Organized Criticality. Retrieved from https://kapalicarsi.wittmeyer.io/definition/self-organized-criticality
Self-Organized Criticality was updated June 2nd, 2022.
Related Key Concepts
This is a list of Key Concepts that Self-Organized Criticality is related to.
Related Governing Features
This is a list of Governing Features that Self-Organized Criticality is related to.
Related Urban Fields
This is a list of Urban Fields that Self-Organized Criticality is related to.
This is the feed, a series of related links and resources. Add a link to the feed →
Nothing in the feed...yet.
This is a list of People that Self-Organized Criticality is related to.
Santa Fe Institute; Fitness Landscape
Major complexity theorist associated with the Sante Fe institute, developed idea of a Fitness Landscape
Read more and see related content for Stuart Kauffman →Scaling | Criticality | Power Laws
'Fingerprint of complexity' extraction plunger pot, bar single shot froth eu shop latte et, chicory, steamed seasonal grounds dark organic.
Read more and see related content for Ricard Solé →Self-Organized Criticality
This is a default subtitle for this page. Read more and see related content for Per Bak →This is a list of Terms that Self-Organized Criticality is related to.
Complex systems do not follow linear, predictable chains of cause and effect. Instead, system trajectories can diverge into wildly different regimes. The moment when a complex system move from one trajectory to another is known as a system bifurcation.
This feature of complex systems means that the behavior of a system cannot be known in advance, but instead needs to be enacted in time. Read more and see related content for Bifurcations →Fill in all boxes here, each piece of information has a role in making pages, links, and visualizations in the site work well.
Fill in all boxes here, each piece of information has a role in making pages, links, and visualizations in the site work well.
You can do two things here. First, you can influence the order of the diagrams for this topic by clicking on the () and () buttons. The diagrams with more plus votes will rise to the top. The second thing you can do here is rate the diagrams against the evolving set of attributes that you can learn more about here. You can only rate each thing once but as the attribute list changes, you can come back and update ratings.
Fill in all boxes here, each piece of information has a role in making pages, links, and visualizations in the site work well.
Fill in all boxes here, each piece of information has a role in making pages, links, and visualizations in the site work well.
Fill in all boxes here, each piece of information has a role in making pages, links, and visualizations in the site work well.
Fill in all boxes here, each piece of information has a role in making pages, links, and visualizations in the site work well.
Fill in all boxes here, each piece of information has a role in making pages, links, and visualizations in the site work well.
Fill in all boxes here, each piece of information has a role in making pages, links, and visualizations in the site work well.